Integrability, Hyperbolic Flows and the Birkhoff Normal Form
نویسنده
چکیده
We prove that a Hamiltonian p ∈ C(T R) is locally integrable near a nondegenerate critical point ρ0 of the energy, provided that the fundamental matrix at ρ0 has no purely imaginary eigenvalues. This is done by using Birkhoff normal forms, which turn out to be convergent in the C sense. We also give versions of the Lewis-Sternberg normal form near a hyperbolic fixed point of a canonical transformation, using a recent result of A.Banyaga, R.de la Llave and C.Wayne. Then we investigate the complex case, showing that when p is holomorphic near ρ0 ∈ T C, then Re p becomes integrable in the complex domain for real times, while the Birkhoff series and the Birkhoff transforms may not converge, i.e. p may not be integrable.
منابع مشابه
Comparison of the hyperbolic range of two-fluid models on two-phase gas -liquid flows
In this paper, a numerical study is conducted in order to compare hyperbolic range of equations of isotherm two-fluid model governing on two-phase flow inside of pipe using conservative Shock capturing method. Differential equations of the two-fluid model are presented in two forms (i.e. form I and form II). In forms I and II, pressure correction terms are hydrodynamic and hydrostatic, respecti...
متن کاملThe Quadratic Zeeman Effect in Hydrogen: an Example of Semi-classical Quantization of a Strongly Non-separable but Almost Integrable System
Semi-classical quantization of multidimensional systems is discussed both in terms of the Einstein-Brillouin-Keller quantization on invariant tori, and in terms of infinite families of periodic orbits. The notions of separability, integrability, and non-integrability of classical systems are introduced. An approximate integrability is used to quantize the quadratic Zeeman problem, via analytic ...
متن کاملFrom the Birkhoff-Gustavson normalization to the Bertrand-Darboux integrability condition
The Bertrand-Darboux integrability condition for a certain class of perturbed harmonic oscillators is studied from the viewpoint of the BirkhoffGustavson(BG)-normalization: In solving an inverse problem of the BGnormalization on computer algebra, it is shown that if the perturbed harmonic oscillators with a homogeneous cubic-polynomial potential and with a homogeneous quartic-polynomial potenti...
متن کاملMultifractal Analysis of Hyperbolic Flows
We establish the multifractal analysis of hyperbolic flows and of suspension flows over subshifts of finite type. A non-trivial consequence of our results is that for every Hölder continuous function noncohomologous to a constant, the set of points without Birkhoff average has full topological entropy.
متن کاملHistoric set carries full hausdorff dimension
We prove that the historic set for ratio of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional non-uniformly hyperbolic dynamical systems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002